Synthesis of a tin compound bearing N-alkoxy carboxamide and methyl ligands as a precursor for SnO₂ fabrication via atomic layer deposition

Jung-Hoon Lee

Senior Researcher, Thin Film Materials **Research Center**

Korea Research Institute of Chemical Technology (KRICT)

The 19th Korea-U.S. Forum on Nanotechnology

ch Institute of

Contents

I Overview of Our R&D Team

II Experiment background

III Result

IV Summary

Overview of Our R&D Team

Development of Core Technologies for Advanced Electronic and Information Materials

Molecular Design ALD/CVD Precursors

Precursors chracterization

Development of deposition process

Applications in Semiconductors

The 19th Korea-U.S. Forum on Nanotechnology

3

Experiment background

Mechanism of atomic layer deposition (ALD)

The 19th Korea-U.S. Forum on Nanotechnology

1. Sequential surface chemical reaction process

- Each precursor supplying sequentially without thermal decomposing
- Forming films by repeating cycles

2. Chemisorption saturation process

- Precursor vapor distributing on surface and saturated by self-limited reaction

Korea Research Institute of Chemical Technology

- Surface reaction and removing physisorbed precursor by inert gas
 - Exact thickness control in nano-scale
 - Excellent large area uniformity
 - Superior step coverage contrast to PVD and CVD

KRI

Result

Precursor (Synthesis and characteristic)—

Result

Structural analyses

- At 100 250 °C, tetragonal SnO₂ formed
- Temperature increased, the intensity of (110) plane increased

- At all deposition temperatures, the X-ray reflections are observed at values of 1.875 and 2.376 Å⁻¹, which indicate the (110) and (101) planes of the tetragonal SnO₂
- (110) plane of the SnO₂ thin films deposited at 150–250 °C indicate a preferential growth to the c-axis, whereas the (101) plane exhibits a random orientation

The 19th Korea-U.S. Forum on Nanotechnology

6

Korea Research Institute of Chemical Technology

Result

The 19th Korea-U.S. Forum on Nanotechnology

•

Korea Research Institute of Chemical Technology

Conclusion

- We successfully deposited tin oxide by atomic layer deposition (ALD) using a novel precursor and O₂ plasma.

- The properties of films through various analysis methods. As a result, SnO₂ films deposited at low temperatures have significant potential as high-performance gas sensor materials.

